
Package: prefio (via r-universe)
October 31, 2024

Title Structures for Preference Data

Description Convenient structures for creating, sourcing, reading,
writing and manipulating ordinal preference data. Methods for
writing to/from PrefLib formats. See Nicholas Mattei and Toby
Walsh ``PrefLib: A Library of Preference Data'' (2013)
<doi:10.1007/978-3-642-41575-3_20>.

Version 0.1.1

Depends R (>= 2.10)

LazyData true

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/fleverest/prefio/,

https://fleverest.github.io/prefio/

BugReports https://github.com/fleverest/prefio/issues/

Imports dplyr, magrittr, tidyr, stats

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://fleverest.r-universe.dev

RemoteUrl https://github.com/fleverest/prefio

RemoteRef HEAD

RemoteSha 3f41dc06670233d425f9266b7358ace244709a16

Contents
adjacency . 2
aggregate.preferences . 3
choices . 4

1

https://doi.org/10.1007/978-3-642-41575-3_20
https://github.com/fleverest/prefio/
https://fleverest.github.io/prefio/
https://github.com/fleverest/prefio/issues/

2 adjacency

group . 5
preferences . 7
read_preflib . 12
write_preflib . 13

Index 16

adjacency Create an Adjacency Matrix for a set of Preferences

Description

Convert a set of preferences to an adjacency matrix summarising wins and losses between pairs of
items

Usage

adjacency(object, weights = NULL, ...)

Arguments

object a preferences object, or an object that can be coerced by as.preferences.

weights an optional vector of weights for the preferences.

... further arguments passed to/from methods.

Details

For a preferences object with N items, the adjacency matrix is an N by N matrix, with element
(i, j) being the number of times item i wins over item j. For example, in the preferences {1} > {3,
4} > {2}, item 1 wins over items 2, 3, and 4, while items 3 and 4 win over item 2.

If weights is specified, the values in the adjacency matrix are the weighted counts.

Value

An N by N matrix, where N is the number of items.

Examples

X <- matrix(c(
2, 1, 2, 1, 2,
3, 2, 0, 0, 1,
1, 0, 2, 2, 3

), nrow = 3, byrow = TRUE)
X <- as.preferences(X, format = "ranking", item_names = LETTERS[1:5])
adjacency(X)

adjacency(X, weights = c(1, 1, 2))

aggregate.preferences 3

aggregate.preferences Aggregate Preferences

Description

Aggregate preferences, returning an aggregated_preferences object of the unique preferences
and their frequencies. The frequencies can be accessed via the function frequencies().

Usage

S3 method for class 'preferences'
aggregate(x, frequencies = NULL, ...)

as.aggregated_preferences(x, ...)

S3 method for class 'aggregated_preferences'
x[i, j, ...]

frequencies(x)

Arguments

x A preferences object for aggregate(); an object that can be coerced to an
aggregated_preferences object for as.aggregated_preferences(), other-
wise an aggregated_preferences object.

frequencies A vector of frequencies for preferences that have been previously aggregated.

... Additional arguments, currently unused.

i indices specifying preferences to extract.

j indices specifying items to extract.

as.aggregated_preferences

if TRUE create an aggregated_preferences object from the indexed prefer-
ences Otherwise index the underlying matrix of ranks and return in a data frame
with the corresponding frequencies.

Value

A data frame of class aggregated_preferences, with columns:

preferences A preferences object of the unique preferences

frequencies The corresponding frequencies.

Methods are available for rbind() and as.matrix().

4 choices

Examples

create a preferences object with duplicated preferences
R <- matrix(c(

1, 2, 0, 0,
0, 1, 2, 3,
2, 1, 1, 0,
1, 2, 0, 0,
2, 1, 1, 0,
1, 0, 3, 2

), nrow = 6, byrow = TRUE)
colnames(R) <- c("apple", "banana", "orange", "pear")
R <- as.preferences(R, format = "ranking")

aggregate the preferences
A <- aggregate(R)

Or pass `aggregate = TRUE` to `as.preferences`
A <- as.preferences(R, aggregate = TRUE)

Subsetting applies to the preferences, e.g. first two unique preferences
A[1:2]

(partial) preferences projected to items 2-4 only
A[, 2:4]

Project preferences onto their hightest ranking
A[, 1, by.rank = TRUE]

convert to a matrix
as.matrix(A)

choices Choices Object

Description

Convert a set of preferences to a list of choices, alternatives, and preferences.

Usage

choices(preferences, names = FALSE)

Arguments

preferences a preferences object, or an object that can be coerced by as.preferences.

names logical: if TRUE use the object names in the returned choices object, else use
object indices.

group 5

Value

A data frame of class choices with elements:

choices A list where each element represents the items chosen for a single rank in the ordering.

alternatives A list where each element represents the alternatives (i.e. the set of remaining items
to choose from) for a single rank.

ordering A list where each element represents the ordering that the choice belongs to.

The list stores the number of choices and the names of the objects as the attributes nchoices and
objects respectively.

Examples

R <- matrix(c(
1, 2, 0, 0,
4, 1, 2, 3,
2, 1, 1, 1,
1, 2, 3, 0,
2, 1, 1, 0,
1, 0, 3, 2

), nrow = 6, byrow = TRUE)
colnames(R) <- c("apple", "banana", "orange", "pear")
R <- preferences(R, format = "ranking")

actual_choices <- choices(R, names = TRUE)
actual_choices[1:6,]

coded_choices <- choices(R, names = FALSE)
coded_choices[1:2,]
as.data.frame(coded_choices)[1:2,]
attr(coded_choices, "objects")

group Group Preferences

Description

Create an object of class grouped_preferences which associates a group index with an object
of class preferences. This allows the preferences to be linked to covariates with group-specific
values.

Usage

group(x, ...)

S3 method for class 'preferences'
group(x, index, ...)

6 group

S3 method for class 'grouped_preferences'
x[i, j, ...]

S3 method for class 'grouped_preferences'
format(x, max = 2L, width = 20L, ...)

Arguments

x A preferences object for group(); otherwise a grouped_preferences object.

... Additional arguments passed on to as.preferences by grouped_preferences;
unused by format.

index A numeric vector or a factor with length equal to the number of preferences
specifying the subject for each set.

i Indices specifying groups to extract, may be any data type accepted by [.

j Indices specifying items to extract. object, otherwise return a matrix/vector.

max The maximum number of preferences to format per subject.

width The maximum width in number of characters to format the preferences.

Value

An object of class grouped_preferences, which is a vector of of group IDs with the following
attributes:

preferences The preferences object.

index An index matching each preference set to each group ID.

Examples

ungrouped preferences (5 preference sets, 4 items)
R <- as.preferences(

matrix(c(
1, 2, 0, 0,
0, 2, 1, 0,
0, 0, 1, 2,
2, 1, 0, 0,
0, 1, 2, 3

), ncol = 4, byrow = TRUE),
format = "ranking",
item_names = LETTERS[1:4]

)
length(R)

group preferences (first three in group 1, next two in group 2)
G <- group(R, c(1, 1, 1, 2, 2))
length(G)

by default up to 2 preference sets are shown per group, "..." indicates if
there are further preferences

preferences 7

G
print(G, max = 1)

select preferences from group 1
G[1,]

exclude item 3 from preferences
G[, -3]

Project preferences in all groups to their first preference
G[, 1, by.rank = TRUE]

preferences from group 2, excluding item 3
- note group 2 becomes the first (and only) group
G[2, -3]

Group preferences by a factor
G <- group(R, factor(c("G1", "G1", "G1", "G2", "G2")))

G
print(G, max = 1)

select preferences from group G1
G["G1"]

preferences Preferences Object

Description

Create a preferences object for representing Ordinal Preference datasets.

Usage

preferences(
data,
format = c("long", "ordering", "ranking"),
id = NULL,
rank = NULL,
item = NULL,
item_names = NULL,
frequencies = NULL,
aggregate = FALSE,
verbose = TRUE,
...

)

S3 method for class 'preferences'

8 preferences

x[i, j, ..., by.rank = FALSE, as.ordering = FALSE]

as.preferences(x, ...)

S3 method for class 'grouped_preferences'
as.preferences(x, aggregate = FALSE, verbose = TRUE, ...)

Default S3 method:
as.preferences(
x,
format = c("long", "ranking", "ordering"),
id = NULL,
item = NULL,
rank = NULL,
item_names = NULL,
aggregate = FALSE,
verbose = TRUE,
...

)

S3 method for class 'matrix'
as.preferences(
x,
format = c("long", "ranking"),
id = NULL,
item = NULL,
rank = NULL,
item_names = NULL,
aggregate = FALSE,
verbose = TRUE,
...

)

S3 method for class 'aggregated_preferences'
as.preferences(x, ...)

S3 method for class 'preferences'
format(x, width = 40L, ...)

Arguments

data A data frame or matrix in one of three formats:

"ordering" Orderings must be a data frame with list-valued columns. Each
row represents an ordering of the items from first to last, representing ties
by a list of vectors corresponding to the items.

"ranking" Each row assigns a rank to each item, with columns representing
items. Note that rankings will be converted to ’dense’ rankings in the output
(see Details).

preferences 9

"long" Three columns: an id column grouping the rows which correspond to a
single set of preferences, an item column specifying (either by index or by
name) the item each row refers to, and a rank column specifying the rank
for the associated item.

format The format of the data: one of "ordering", "ranking", or "long" (see above). By
default, data is assumed to be in "long" format.

id For data in long-format: the column representing the preference set grouping.

rank For data in long-format: the column representing the rank for the associated
item.

item For data in long-format: the column representing the items by name or by index,
in which case the item_names parameter should also be passed, or the items will
be named as integers.

item_names The names of the full set of items. When loading data using integer-valued
indices in place of item names, the item_names character vector should be in
the correct order.

frequencies An optional integer vector containing the number of occurences of each prefer-
ence. If provided, the method will return a aggregated_preferences object
with the corresponding frequencies.

aggregate If TRUE, aggregate the preferences via aggregate.preferences before return-
ing. This returns an aggregated_preferences object.

verbose If TRUE, diagnostic messages will be sent to stdout.

... Unused.

x The preferences object to subset.

i The index of the preference-set to access.

j The item names or indices to project onto, e.g. if j = 1 the preferences will be
projected only onto the first item; if by.rank = TRUE j corresponds to the rank
of the items to subset to, e.g. if j = 1 then preferences will be truncated to only
contain their highest-preference.

by.rank When FALSE, the index j corresponds to items, when true the index corresponds
to rank.

as.ordering When FALSE, returns a preferences object: internally rows i contain the rank-
ing assigned to each item in preference pi. When TRUE, returns a data frame
where columns group the items by rank.

width The width in number of characters to format each preference, truncating by "..."
when they are too long.

Details

Ordinal preferences can order every item, or they can order a subset. Some ordinal preference
datasets will contain ties between items at a given rank. Hence, there are four distinct types of
preferential data:

soc Strict Orders - Complete List

soi Strict Orders - Incomplete List

10 preferences

toc Orders with Ties - Complete List

toi Orders with Ties - Incomplete List

The data type is stored alongside the preferences as an attribute attr(preferences, "preftype").
The data type is determined automatically. If every preference ranks every item, then the data type
will be "soc" or "soi". Similarly, if no preference contains a tie the data type will be "toc" or "toi".

A set of preferences can be represented either by ranking or by ordering. These correspond to
the two ways you can list a set of preferences in a vector:

ordering The items are listed in order of most preferred to least preferred, allowing for multiple
items being in the same place in the case of ties.

ranking A rank is assigned to each item. Conventionally, ranks are integers in increasing order
(with larger values indicating lower preference), but they can be any ordinal values. Any given
rankings will be converted to ’dense’ rankings: positive integers from 1 to some maximum
rank, with no gaps between ranks.

When reading preferences from an ordering matrix, the index on the items is the order passed to
the item_names parameter. When reading from a rankings matrix, if no item_names are provided,
the order is inferred from the named columns.

A preferences object can also be read from a long-format matrix, where there are three columns:
id, item and rank. The id variable groups the rows of the matrix which correspond to a single set of
preferences, which the item:rank, pairs indicate how each item is ranked. When reading a matrix
from this format and no item_names parameter is passed, the order is determined automatically.

Value

By default, a preferences object, which is a data frame with list-valued columns corresponding
to preferences on the items. This may be an ordering on subsets of the items in the case of ties, or
a potentially-partial strict ordering. In the case of partial or tied preferences, some entries may be
empty lists.

Examples

create rankings from data in long form

Example long-form data
x <- data.frame(

id = c(rep(1:4, each = 4), 5, 5, 5),
item = c(
LETTERS[c(1:3, 3, 1:4, 2:5, 1:2, 1)], NA,
LETTERS[3:5]

),
rank = c(4:1, rep(NA, 4), 3:4, NA, NA, 1, 3, 4, 2, 2, 2, 3)

)

* Set #1 has two different ranks for the same item (item C
has rank 1 and 2). This item will be excluded from the preferences.
* All ranks are missing in set #2, a technically valid partial ordering
* Some ranks are missing in set #3, a perfectly valid partial ordering
* Set #4 has inconsistent ranks for two items, and a rank with a

preferences 11

missing item.
* Set #5 is not a dense ranking. It will be converted to be dense and then
inferred to be a regular partial ordering with ties.
split(x, x$rank)

Creating a preferences object with this data will attempt to resolve these
issues automatically, sending warnings when assumptions need to be made.
preferences(x, id = "id", item = "item", rank = "rank")

Convert an existing matrix of rankings to a preferences object.
rnk <- matrix(c(

1, 2, 0, 0,
4, 1, 2, 3,
2, 1, 1, 1,
1, 2, 3, 0,
2, 1, 1, 0,
1, 0, 3, 2

), nrow = 6, byrow = TRUE)
colnames(rnk) <- c("apple", "banana", "orange", "pear")

rnk <- as.preferences(rnk, format = "ranking")

Convert an existing data frame of orderings to a preferences object.
e <- character() # short-hand for empty ranks
ord <- preferences(

as.data.frame(
rbind(

list(1, 2, e, e), # apple, banana
list("banana", "orange", "pear", "apple"),
list(c("banana", "orange", "pear"), "apple", e, e),
list("apple", "banana", "orange", e),
list(c("banana", "orange"), "apple", e, e),
list("apple", "pear", "orange", e)

)
),
format = "ordering",
item_names = c("apple", "banana", "orange", "pear")

)

Access the first three sets of preferences
ord[1:3,]

Truncate preferences to the top 2 ranks
ord[, 1:2, by_rank = TRUE]

Exclude pear from the rankings
ord[, -4]

Get the highest-ranked items and return as a data.frame of orderings
ord[, 1, by_rank = TRUE, as.ordering = TRUE]

Convert the preferences to a ranking matrix
as.matrix(ord)

12 read_preflib

Get the rank of apple in the third preference-set
as.matrix(ord)[3, 1]

Get all the ranks assigned to apple as a vector
as.matrix(ord)[, "apple"]

read_preflib Read Ordinal Preference Data From PrefLib

Description

Read orderings from .soc, .soi, .toc or .toi files storing ordinal preference data format as de-
fined by {PrefLib}: A Library for Preferences into a preferences object.

Usage

read_preflib(
file,
from_preflib = FALSE,
preflib_url = "https://www.preflib.org/static/data"

)

Arguments

file A preferential data file, conventionally with extension .soc, .soi, .toc or .toi
according to data type.

from_preflib A logical which, when TRUE will attempt to source the file from PrefLib by
adding the database HTTP prefix.

preflib_url The URL which will be preprended to file, if from_preflib is TRUE.

Details

Note that PrefLib refers to the items being ordered by "alternatives".

The file types supported are

.soc Strict Orders - Complete List

.soi Strict Orders - Incomplete List

.toc Orders with Ties - Complete List

.toi Orders with Ties - Incomplete List

The numerically coded orderings and their frequencies are read into a data frame, storing the item
names as an attribute. The as.aggregated_preferences method converts these to an aggregated_preferences
object with the items labelled by name.

A PrefLib file may be corrupt, in the sense that the ordered alternatives do not match their names. In
this case, the file can be read in as a data frame (with a warning), but as.aggregated_preferences
will throw an error.

https://www.preflib.org/

write_preflib 13

Value

An aggregated_preferences object containing the PrefLib data.

Note

The Netflix and cities datasets used in the examples are from Caragiannis et al (2017) and Bennet
and Lanning (2007) respectively. These data sets require a citation for re-use.

References

Mattei, N. and Walsh, T. (2013) PrefLib: A Library of Preference Data. Proceedings of Third
International Conference on Algorithmic Decision Theory (ADT 2013). Lecture Notes in Artificial
Intelligence, Springer.

Bennett, J. and Lanning, S. (2007) The Netflix Prize. Proceedings of The KDD Cup and Workshops.

Examples

Can take a little while depending on speed of internet connection

strict complete orderings of four films on Netflix
netflix <- read_preflib("netflix/00004-00000138.soc", from_preflib = TRUE)
head(netflix)
names(netflix$preferences)

strict incomplete orderings of 6 random cities from 36 in total
cities <- read_preflib("cities/00034-00000001.soi", from_preflib = TRUE)

write_preflib Write Ordinal Preference Data to PrefLib Formats

Description

Write preferences to .soc, .soi, .toc or .toi file types, as defined by the PrefLib specification:
{PrefLib}: A Library for Preferences.

Usage

write_preflib(
x,
file = "",
title = NULL,
publication_date = NULL,
modification_type = NULL,
modification_date = NULL,
description = NULL,
relates_to = NULL,

https://www.preflib.org/

14 write_preflib

related_files = NULL
)

Arguments

x An aggregated_preferences object to write to file. If x is of a different class,
it attempts to coerce x into an aggregated_preferences object via as.aggregated_preferences().

file Either a character string naming the a file or a writeable, open connection. The
empty string "" will write to stdout.

title The title of the data file, for instance the name of the election represented in the
data file. If not provided, we check for the presence of attr(x, "preflib"),
and if it exists we check for TITLE.

publication_date

The date at which the data file was published for the first time. If not provided,
we check for the presence of attr(x, "preflib"), and if it exists we check for
PUBLICATION DATE.

modification_type

The modification type of the data: one of original, induced, imbued or synthetic
(see Details). If not provided, we check for the presence of attr(x, "preflib"),
and if it exists we check for MODIFICATION TYPE.

modification_date

The last time the data was modified. If not provided, we check for the presence
of attr(x, "preflib"), and if it exists we check for MODIFICATION DATE.

description A description of the data file, providing additional information about it. If not
provided, we check for the presence of attr(x, "preflib"), and if it exists we
check for DESCRIPTION.

relates_to The name of the data file that the current file relates to, typically the source file
in case the current file has been derived from another one. If not provided, we
check for the presence of attr(x, "preflib"), and if it exists we check for
RELATES TO.

related_files The list of all the data files related to this one, comma separated. If not provided,
we check for the presence of attr(x, "preflib"), and if it exists we check for
RELATED FILES.

Details

The file types supported are

.soc Strict Orders - Complete List

.soi Strict Orders - Incomplete List

.toc Orders with Ties - Complete List

.toi Orders with Ties - Incomplete List

The PrefLib format specification requires some additional metadata. Note that the additional meta-
data required for the PrefLib specification is not necessarily required for the write_preflib method;
any missing fields required by the PrefLib format will simply show "NA".

write_preflib 15

TITLE (required) The title of the data file, for instance the year of the election represented in the
data file.

DESCRIPTION (optional) A description of the data file, providing additional information about
it.

RELATES TO (optional) The name of the data file that the current file relates to, typically the
source file in case the current file has been derived from another one.

RELATED FILES (optional) The list of all the data files related to this one, comma separated.

PUBLICATION DATE (required) The date at which the data file was published for the first time.

MODIFICATION TYPE (required) The modification type of the data. One of:

original Data that has only been converted into a PrefLib format.
induced Data that has been induced from another context. For example, computing a pairwise

relation from a set of strict total orders. No assumptions have been made to create these
files, just a change in the expression language.

imbued Data that has been imbued with extra information. For example, extending an in-
complete partial order by placing all unranked candidates tied at the end.

synthetic Data that has been generated artificially.

MODIFICATION DATE (optional) The last time the data was modified.

In addition to these fields, some required PrefLib fields will be generated automatically depend-
ing on arguments to write_preflib() and the attributes of the aggregated_preferences object
being written to file:

FILE NAME The name of the output file.

DATA TYPE The data type (one of soc, soi, toc or toi).

NUMBER ALTERNATIVES The number of items.

ALTERNATIVE NAME X The name of each item, where X ranges from 0 to length(items).

NUMBER VOTERS The total number of orderings.

NUMBER UNIQUE ORDERS The number of distinct orderings.

Note that PrefLib refers to the items as "alternatives". The "alternatives" in the output file will be
the same as the "items" in the aggregated_preferences object.

Value

No return value. Output will be written to file or stdout.

Index

[.aggregated_preferences
(aggregate.preferences), 3

[.grouped_preferences (group), 5
[.preferences (preferences), 7

adjacency, 2
aggregate.preferences, 3, 9
aggregated_preferences, 9, 12, 13
as.aggregated_preferences

(aggregate.preferences), 3
as.matrix(), 3
as.preferences, 6
as.preferences (preferences), 7

choices, 4

format.grouped_preferences (group), 5
format.preferences (preferences), 7
frequencies (aggregate.preferences), 3

group, 5

preferences, 2–4, 6, 7

rbind(), 3
read_preflib, 12

write_preflib, 13

16

	adjacency
	aggregate.preferences
	choices
	group
	preferences
	read_preflib
	write_preflib
	Index

